Instruments for causal inference: an epidemiologist's dream?

نویسندگان

  • Miguel A Hernán
  • James M Robins
چکیده

The use of instrumental variable (IV) methods is attractive because, even in the presence of unmeasured confounding, such methods may consistently estimate the average causal effect of an exposure on an outcome. However, for this consistent estimation to be achieved, several strong conditions must hold. We review the definition of an instrumental variable, describe the conditions required to obtain consistent estimates of causal effects, and explore their implications in the context of a recent application of the instrumental variables approach. We also present (1) a description of the connection between 4 causal models-counterfactuals, causal directed acyclic graphs, nonparametric structural equation models, and linear structural equation models-that have been used to describe instrumental variables methods; (2) a unified presentation of IV methods for the average causal effect in the study population through structural mean models; and (3) a discussion and new extensions of instrumental variables methods based on assumptions of monotonicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Ingenious Instruments for Fundamental Determinants of Long-Run Economic Growth and Development

Empirical studies of the determinants of cross-country differences in long-run development are characterized by the ingenious nature of the instruments used. However, scepticism remains about their ability to provide a valid basis for causal inference. This paper examines whether explicit consideration of the statistical adequacy of the underlying reduced form, which provides an embedding frame...

متن کامل

Regression and Weighting Methods for Causal Inference Using Instrumental Variables

Recent researches in econometrics and statistics have gained considerable insights into the use of instrumental variables (IVs) for causal inference. A basic idea is that IVs serve as an experimental handle, the turning of which may change each individual’s treatment status and, through and only through this effect, also change observed outcome. The average difference in observed outcome relati...

متن کامل

Confidence Intervals for Causal Effects with Invalid In- struments using Two-Stage Hard Thresholding

The instrumental variable (IV) method is commonly used to estimate the causal effect of a treatment on an outcome by using IVs that satisfy the assumptions of association with treatment, no direct effect on the outcome and ignorability. A major challenge in IV analysis is to find said IVs, but typically one is unsure of whether all of the putative IVs are in fact valid (i.e. satisfy the assumpt...

متن کامل

Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption

Background Mendelian randomization (MR) is being increasingly used to strengthen causal inference in observational studies. Availability of summary data of genetic associations for a variety of phenotypes from large genome-wide association studies (GWAS) allows straightforward application of MR using summary data methods, typically in a two-sample design. In addition to the conventional inverse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epidemiology

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2006